skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Groh, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present multiwavelength observations of the Type II SN 2020pni. Classified at ∼1.3 days after explosion, the object showed narrow (FWHM intensity <250 km s −1 ) recombination lines of ionized helium, nitrogen, and carbon, as typically seen in flash-spectroscopy events. Using the non-LTE radiative transfer code CMFGEN to model our first high-resolution spectrum, we infer a progenitor mass-loss rate of M ̇ = ( 3.5 – 5.3 ) × 10 − 3 M ⊙ yr −1 (assuming a wind velocity of v w = 200 km s −1 ), estimated at a radius of R in = 2.5 × 10 14 cm. In addition, we find that the progenitor of SN 2020pni was enriched in helium and nitrogen (relative abundances in mass fractions of 0.30–0.40 and 8.2 × 10 −3 , respectively). Radio upper limits are also consistent with dense circumstellar material (CSM) and a mass-loss rate of M ̇ > 5 × 10 − 4 M ☉ yr − 1 . During the initial 4 days after first light, we also observe an increase in velocity of the hydrogen lines (from ∼250 to ∼1000 km s −1 ), suggesting complex CSM. The presence of dense and confined CSM, as well as its inhomogeneous structure, indicates a phase of enhanced mass loss of the progenitor of SN 2020pni during the last year before explosion. Finally, we compare SN 2020pni to a sample of other shock-photoionization events. We find no evidence of correlations among the physical parameters of the explosions and the characteristics of the CSM surrounding the progenitors of these events. This favors the idea that the mass loss experienced by massive stars during their final years could be governed by stochastic phenomena and that, at the same time, the physical mechanisms responsible for this mass loss must be common to a variety of different progenitors. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    ABSTRACT We present the data and analysis of SN 2018gjx, an unusual low-luminosity transient with three distinct spectroscopic phases. Phase I shows a hot blue spectrum with signatures of ionized circumstellar material (CSM), Phase II has the appearance of broad SN features, consistent with those seen in a Type IIb supernova at maximum light, and Phase III is that of a supernova interacting with helium-rich CSM, similar to a Type Ibn supernova. This event provides an apparently rare opportunity to view the inner workings of an interacting supernova. The observed properties can be explained by the explosion of a star in an aspherical CSM. The initial light is emitted from an extended CSM (∼4000 R⊙), which ionizes the exterior unshocked material. Some days after, the SN photosphere envelops this region, leading to the appearance of a SN IIb. Over time, the photosphere recedes in velocity space, revealing interaction between the supernova ejecta and the CSM that partially obscures the supernova nebular phase. Modelling of the initial spectrum reveals a surface composition consistent with compact H-deficient Wolf–Rayet and Luminous Blue Variable (LBV) stars. Such configurations may not be unusual, with SNe IIb being known to have signs of interaction so at least some SNe IIb and SNe Ibn may be the same phenomena viewed from different angles, or possibly with differing CSM configurations. 
    more » « less